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A B S T R A C T

A high degree of consistency and comparability among chlorophyll algorithms is necessary to meet the goals of
merging data from concurrent overlapping ocean color missions for increased coverage of the global ocean and
to extend existing time series to encompass data from recently launched missions and those planned for the near
future, such as PACE, OLCI, HawkEye, EnMAP and SABIA-MAR. To accomplish these goals, we developed 65
empirical ocean color (OC) chlorophyll algorithms for 25 satellite instruments using the largest available and
most globally representative database of coincident in situ chlorophyll a and remote sensing reflectances.
Excellent internal consistency was achieved across these OC ‘Version -7’ algorithms, as demonstrated by a
median regression slope and coefficient of determination (R2) of 0.985 and 0.859, respectively, among 903
pairwise comparisons of OC-modeled chlorophyll. SeaWiFS and MODIS-Aqua satellite-to-in situ match-up results
indicated equivalent, and sometimes superior, performance to current heritage chlorophyll algorithms.

During the past forty years of ocean color research the violet band (412 nm) has rarely been used in empirical
algorithms to estimate chlorophyll concentrations in oceanic surface water. While the peak in chlorophyll-
specific absorption coincides with the 443 nm band present on most ocean color sensors, the magnitude of
chlorophyll-specific absorption at 412 nm can reach upwards of ~70% of that at 443 nm. Nearly one third of
total chlorophyll-specific absorption between 400 and 700 nm occurs below 443 nm, suggesting that bands
below 443 nm, such as the 412 nm band present on most ocean color sensors, may also be useful in detecting
chlorophyll under certain conditions and assumptions. The 412 nm band is also the brightest band (that is, with
the most dominant magnitude) in remotely sensed reflectances retrieved by heritage passive ocean color in-
struments when chlorophyll is less than ~0.1 mg m−3, which encompasses ~24% of the global ocean. To at-
tempt to exploit this additional spectral information, we developed two new families of OC algorithms, the OC5
and OC6 algorithms, which include the 412 nm band in the MBR. By using this brightest band in MBR empirical
chlorophyll algorithms, the highest possible dynamic range of MBR may be achieved in these oligotrophic areas.

The terms oligotrophic, mesotrophic, and eutrophic get frequent use in the scientific literature to designate
trophic status; however, quantitative definitions in terms of chlorophyll levels are arbitrarily defined. We de-
veloped a new, reproducible, bio-optically based index for trophic status based on the frequency of the brightest,
maximum band in the MBR for the OC6_SEAWIFS algorithm, along with remote sensing reflectances from the
entire SeaWiFS mission. This index defines oligotrophic water as chlorophyll less than ~0.1 mg m−3, eutrophic
water as chlorophyll above 1.67 mg m−3 and mesotrophic water as chlorophyll between 0.1 and 1.67 mg m−3.
Applying these criteria to the 40-year mean global ocean chlorophyll data set revealed that oligotrophic, me-
sotrophic, and eutrophic water occupy ~24%, 67%, and 9%, respectively, of the area of the global ocean on
average.

1. Introduction

Ocean color satellite instruments have provided spatially and tem-
porally comprehensive data on the near-surface distribution of the
photosynthetic pigment chlorophyll a (CHL; mg m−3) since the launch
of the pioneering NASA Coastal Zone Color Scanner (CZCS) on board

Nimbus-7 in 1978. This near-continuous, globally-distributed data re-
cord plays a key role in continually advancing our scientific under-
standing of spatial and temporal distributions of phytoplankton and
other marine biogeochemical constituents. In particular, ocean color
satellite data records have provided novel insights into fundamental
aquatic biogeochemical processes (Siegel et al., 2005a; IOCCG, 2009a,
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2009b), enabled estimates of global ocean primary production (Antoine
et al., 1996; Behrenfeld et al., 2006; Saba et al., 2011; O'Reilly, 2017),
and supported assessments of climate-related changes in phytoplankton
dynamics and oceanic production (Behrenfeld et al., 2006, Henson
et al., 2009, Uitz et al., 2010, Siegel et al., 2013).

The oceanographic community seeks to refine and develop climate
data records (CDRs) of chlorophyll a (NRC, 2011) and invests sub-
stantially into improving and ensuring the consistency of this derived
data product across satellite instruments (IOCCG, 2007). This not only
enables development of long-term (multi-decadal) time-series, but also
facilitates multi-instrument data merging using overlapping missions
(Gregg and Woodward, 1998; Kwiatkowska and Fargion, 2002; IOCCG,
2007; Brewin et al., 2014). Individual ocean color satellite instruments,
with their limited duration, cannot usually be used to assess decadal-
plus changes (e.g., CZCS: 1978–1986; OCTS: 1996–1997; SeaWiFS:
1997–2010; MERIS: 2002–2012). The merging of data from multiple
instruments, however, significantly increases their global coverage,
particularly in cloudy areas and seasons, while also enhancing the
construction of long time-series. Note that merging CHL data from two,
three and four instruments realizes median global coverages of ~15%,
~20%, and ~24%, respectively (Table 1). The value of multi-instru-
ment data products, however, decreases substantially without inter-
instrument consistency, which relates to the quality of their calibra-
tions, the consistency and comparability of atmospheric correction
methods applied to various sensors, and the consistency of the geo-
physical data product algorithms applied across instruments.

While ocean color satellite instrument characteristics vary (Table 2),
they share common data processing steps and strategies. Briefly, passive
satellite ocean color instruments measure the spectral radiance ema-
nating from the top of the atmosphere at discrete visible and infrared

wavelengths. In conventional agency standard processing, atmospheric
correction algorithms are applied to remove the contribution of the
atmosphere from the total signal and produce estimates of remote
sensing reflectances (Rrs(λ); sr−1), that is, the light exiting the water
normalized to the downwelling irradiance incident on the sea surface
(Gordon and Wang, 1994; Mobley et al., 2016). Bio-optical algorithms
are then applied to the Rrs(λ) to produce estimates of additional

Acronyms and abbreviations (ocean color sensors are denoted
by *)

aCDOM absorption by colored dissolved organic matter (m−1)
adg absorption by non-algal particles + colored dissolved or-

ganic matter (m−1)
aNAP absorption by non-algal particles (m−1)
aph absorption by phytoplankton (m−1)
bbp backscattering by particles (m−1)
CDOM Colored Dissolved Organic Matter
CDR Climate Data Record
CHL concentration of chlorophyll-a (mg m−3)
COCTS* Chinese Ocean Color and Temperature Scanner, (HY-1B)
CW Clear Water
CZCS* Coastal Zone Color Scanner, (NIMBUS-7)
CZI* Coastal Zone Imager
DRL German Aerospace Center
ENMAP* Environmental Mapping and Analysis Program

Hyperspectral Imager
GLI* Global Imager (NASDA)
GOCI* Geostationary Ocean Color Imager
Gmean Geometric mean (of log-transformed data)
HawkEye* HawkEye Ocean Color Sensor (SeaHawk Cubesat)
HICO* Hyperspectral Imager for the Coastal Ocean
IDL Interactive Data Language (software)
IOP Inherent Optical Property
IRrs Interpolated Remote Sensing Reflectance (sr−1)
MaxB Maximum Band (brightest, dominant band)
MBR Maximum Band Ratio
MERIS* Medium-spectral Resolution, Imaging Spectrometer,

(ENVISAT)
MERSI* Medium Resolution Spectral Imager
MISR* Multi Angle Imaging Spectroradiometer

MODIS* Moderate Resolution Imaging Spectroradiometer (Terra
and Aqua)

MOS* Modular Optical Scanner (IRS-P3)
NAP Non-algal particles
NetCDF Network Common Data Form [a type of formatted data

file]
NLW Normalized Water-Leaving Radiance (uW cm−2

sr−1 nm−1)
NOMAD NASA Bio-Optical Marine Algorithm Data set
OBPG Ocean Biology and Processing Group (NASA-GSFC)
OCI* Ocean Color Imager, (ROCSAT)
OCM* Ocean Colour Monitor, (IRS-P4)
OCTS* Ocean Colour and Thermal Sensor (ADEOS)
OLCI* Ocean and Land Colour Instrument, (Sentinel-3)
OLI* Operational Land Imager
OSMI* Ocean Scanning Multispectral Imager (KOMPSAT-1)
PACE_OCI* PACE Ocean Color Instrument
POLDER* POLarization and Directionality of the Earth Reflectances,

(ADEOS)
POLDER_2* Follow-on mission, (ADEOS-2)
RMA Reduced Major Axis [‘type-2’ linear regression]
Rrs Remote Sensing Reflectance (λ sr−1)
R2 Correlation coefficient squared (Coefficient of Determi-

nation)
SABIA_MAR* Satélites Argentino-Brasileño para Información

Ambiental del Mar
SeaWiFS* Sea-viewing Wide Field-of-view Sensor, (SeaStar)
SEABAM SeaWiFS Bio-optical Algorithm Mini-Workshop
SGLI* Second-Generation Global Imager, (GCOM-C-Japan)
SMI Standard Mapped Images [4320 × 2160 pixels]
VIIRS* Visible Infrared Imaging Radiometer Suite (Suomi NPP,

JPSS-1)

Table 1
Median daily percent global coverage (Median %) of CHL in 10,239 merged
9 km Standard Mapped Images by various sensors and their combinations (C:
CZCS, A: MODIS-Aqua, M: MERIS, O: OCTS, S: SeaWiFS, T: MODIS-Terra, V:
VIIRS). All available data from 30 October 1978 to 16 March 2018 were
considered.

Sensors N Median %

AMST 2711 24.22
AMTV 97 23.73
AMT 703 22.23
ATV 2160 20.93
AST 40 19.34
MST 62 19.17
TV 1 18.18
AV 5 18.16
AMS 6 17.94
AT 3 16.01
ST 763 15.5
AM 3 13.33
T 2 9.36
S 921 7.76
O 223 5.02
C 2539 1.18
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geophysical properties, such as spectral marine inherent optical prop-
erties (IOPs), namely the absorption and backscattering properties of
seawater and its particulate and dissolved constituents (IOCCG, 2006;
Werdell et al., 2013, 2018), and chlorophyll a (O'Reilly et al., 1998).

Broadly speaking, the community historically employs two algo-
rithmic approaches to derive chlorophyll a from Rrs(λ), colloquially
referred to as empirical algorithms (Dierssen, 2010) and semi-analytical
algorithms (SAAs; IOCCG, 2006). Empirical algorithms statistically re-
late measurements (most often collected in situ) of CHL and Rrs(λ). A
well-known empirical approach follows O'Reilly et al. (1998), where a
sequencing blue-to-green ratio of Rrs(λ) statistically relates to CHL via a
polynomial expression. Several additional empirical formulations exist,
including (but not limited to) Rrs(λ) line-height methods (Hu et al.,
2012), linear red-edge ratio methods (Moses et al., 2012, Gitelson et al.,
2007, Gilerson et al., 2010, and Dall'Olmo et al., 2005) and artificial
neural network methods (Doerffer and Schiller, 2007). Alternatively,
semi-analytical algorithms provide estimates of CHL using a combina-
tion of empiricism and simplification of the radiative transfer equations
(e.g., IOCCG, 2006; Werdell et al., 2018). Most SAAs attempt to estimate
simultaneously the magnitudes of CHL (via spectral absorption of
phytoplankton; aph(λ), m−1), spectral backscattering by particles (bbp
(λ); m−1) and the combined absorption by non-algal particles and co-
lored dissolved organic material (adg(λ); m−1). This is typically ac-
complished by assuming spectral shape functions for all aquatic con-
stituent absorption and scattering components and using linear or
nonlinear inversion methods (e.g., the nonlinear least squares optimi-
zation method of Levenberg-Marquardt) to retrieve the magnitudes of
each constituent required to match the spectral distribution of Rrs(λ).

The NASA Ocean Biology Processing Group (OBPG; https://
oceancolor.gsfc.nasa.gov) currently employs the approaches of
O'Reilly et al. (1998) in combination with Hu et al. (2012) to produce
and distribute operationally CHL data products from all ocean color
satellites within its scope. The original SeaWiFS CHL algorithm was
developed by O'Reilly et al. (1998) and further refined in O'Reilly et al.

(2000). Its current version, along with similar band ratio algorithms for
OCTS, MERIS, MODIS, and VIIRS, was developed following the release
of the NASA bio-Optical Marine Algorithm Dataset (NOMAD; Werdell
and Bailey, 2005) and has been used by the OBPG in all of its major
reprocessing of data since 2009 (https://oceancolor.gsfc.nasa.gov/
reprocessing/). In its 2014 reprocessing, the OBPG augmented their
default suite of data products by also producing CHL from Hu et al.
(2012), which merges the standard band ratio algorithm with their
color index (CI). This refinement is restricted to relatively clear water
and currently transitions between the two methods when chlorophyll a
from CI falls between 0.15 and 0.2 mg m−3. Note this algorithm change
applies to all ocean color instruments for which the OBPG is responsible
and requires an empirical relationship to shift other satellites' bands to
those required as input into CI (e.g., 547 nm for MODIS to 555 nm). The
OBPG continues to produce and distribute both CHL products in par-
allel.

Here, we focus on the algorithm form presented in O'Reilly et al.
(1998), with this approach hereinafter referred to as OC. The OC ap-
proach can be effectively and consistently applied to all satellite in-
struments dating back to CZCS (McClain, 2009), as well as all those
planned for the future (e.g., PACE Science Definition Team, 2018). The
OBPG applies instrument-specific versions of OC to each ocean color
satellite within its scope (https://oceancolor.gsfc.nasa.gov/atbd/chlor_
a/) and periodically updates the polynomial fit coefficients as new in
situ data become available. The use of a large, temporally and spatially
diverse and common set of in situ chlorophyll a and Rrs(λ) pairs to
develop cross-instrument algorithms facilitates the spatial and temporal
comparability of overlapping missions. The OBPG last updated the OC
coefficients in 2009 using NOMAD. Since that time, the in situ data set
described in Valente and 42 co-authors (2015) emerged for use in sa-
tellite algorithm development, which offers, to our knowledge, the most
comprehensive CHL-Rrs(λ) data set compiled to date. This data set
includes NOMAD, as well as many other data, and thus offers a timely
opportunity to derive the next generation of OC algorithm

Table 2
Ocean color satellite instruments considered in this study. The International Ocean Colour Coordinating Group (IOCCG) provides additional details on each in-
strument (http://www.ioccg.org).

Instrument Key wavelengths Agency/Spacecraft Mission life

CZCS 443;520;550 NASA/Nimbus-7 1978–1986
OCTS 412;443;490;516;565;667 NASDA/ADEOS 1996–1997
POLDER 443;490;565 CNES/ADEOS 1996–1997
MOS 408;443;485;520;570;615 DLR/IRS-P3 1996–2004
SeaWiFS 412;443;490;510;555;670 NASA-Orbital/Orbview-2 1997–2010
OCI 443;490;510;555 NEC/ROCSAT-1 1999–2004
OSMI 412;443;490;510;555;670 KARI/KOMPSAT-1 1999–2008
OCM; OCM-2a 412;443;490;510;555;660 ISRO/IRS-P4; Oceansat-2 1999–2010; 2009–present
MISR 446;557 NASA/Terra 1999–present
MODIS 412;442;488;530;554;666 NASA/Terra; Aqua 1999–present; 2002–present
GLI 412;443;490;520;565;666 NASDA/ADEOS-II 2002–2003
POLDER 2 443;490;565 CNES/ADEOS-II 2002–2003
COCTS 412;443;490;520;565;670 SOA/SZ-3; HY-1B 2002–2004; 2007–present
MERIS 412;442;490;510;560;665 ESA/Envisat 2002–2012
MERSI 412;443;490;520;565;650 CMA-NSMC/FY-3 2008–2015
HICO 416;444;490;513;553;668 ONR-DOD-NASA/ISS 2009–2014
GOCI 412;443;490;555;660;680 KIOST/COMS 2010–present
VIIRSb 410;443;486;551 NOAA-NASA/Suomi NPP 2012–present
OLIc 443;482;561 USGS-NASA Landsat-8 2013–present
OLCId 413;443;490;510;560;665 ESA-Copernicus/Sentinel-3 2016–present
SGLI 412;443;490;530;565;674 JAXA/GCOM-C 2017–present
HawkEye 412;443;490;510;555;670 NASA-UNCW/SeaHawk 2018-present
EnMAP 424;445;489;490;513;554;672 DLR 2019 launch
SABIA-Mar 412;443;490;510;555;665 CONAE-AEB-INPE 2020 launch
PACE-OCIe 412;443;490;510;555;678 NASA 2022 launch

a Applicable to OCM-3/Oceansat-3, to be launched in 2018–2019.
b Applicable to upcoming versions of VIIRS in the NOAA-NASA JPSS series.
c Applicable to OLI onboard Landsat-9, to be launched in 2021.
d Applicable to upcoming versions of OLCI in the ESA Sentinel-3 series.
e Likely applicable to upcoming hyperspectral instruments, such as the DRL HIS/EnMAP.
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parameterizations.
The scope of this paper is two-fold. First, we present the derivation

of updated and internally consistent versions of the OC suite of algo-
rithms for 25 ocean color satellite sensors, as well as their satellite-to-in
situ validation results for SeaWiFS and MODIS-Aqua. Second, we pre-
sent expanded versions of the OC algorithms that make use of addi-
tional spectral information when available (wavelengths on or near 412
and 670 nm). Our primary and secondary purposes are to provide
modern versions of this core algorithm that better represent spatial and
temporal bio-optical diversity than their predecessors and to explore
increasing information content through the inclusion of additional
wavelengths. We acknowledge that community momentum and focus
has diversified beyond chlorophyll a (e.g., towards IOPs, marine particle
characterization, and carbon stocks), as knowledge of bio-optics,
available instrumentation, and computing resources have all improved
and new science questions have emerged. We also acknowledge the
limitations of an inherent assumption of the OC approach – namely,
that all optically relevant seawater constituents, such as non-algal
particles (NAP) and colored dissolved organic matter (CDOM), co-vary
with chlorophyll a – and the general sensitivity of band-ratio algorithms
to errors in ocean color atmospheric correction and adjacent bright
targets. SAAs have shown substantial promise in their ability to si-
multaneously retrieve multiple parameters, thus isolating confounding
constituent signals that violate the former assumption. And, line-height
approaches (specifically, Hu et al., 2012) have shown decreased sen-
sitivity to the latter. Yet, we believe the further refinement of the em-
pirical OC algorithms still makes a substantial and necessary con-
tribution to the field. The OC approach offers a unique opportunity to
consistently link global satellite measurements of the marine biosphere
from 1978 to present day, an activity that cannot currently be as ef-
fectively accomplished using alternative approaches with specialized
wavelength requirements. Furthermore, CHL serves as input to many
secondary algorithms used to derive other biogeochemical and bio-
optical products (e.g., Uitz et al., 2010; Hirata et al., 2011; Werdell
et al., 2013) that undoubtedly benefit from well-assured cross-instru-
ment consistency and global representation.

2. Methods

2.1. Maximum band ratio algorithms

It was understood early in the CZCS mission that reliable remotely-
sensed estimates of total pigment concentrations (=
CHL + phaeopigments) could be obtained over a wide concentration
range by using the Rrs443:Rrs550 band ratio to estimate concentrations
below approximately 1.5 mg m−3, then switching to the Rrs520:Rrs550

band ratio above this concentration (Gordon et al., 1983). Note that we
indicate wavelength dependency using subscript (that is, Rrs443 in-
dicates remote-sensing reflectance at 443 nm). The standard CZCS
pigment algorithm switched between two equations that related the
two band ratios to total pigment concentrations. The switching, how-
ever, generated a discontinuity in pigment estimates at the switching

value (Fig. 4 in O'Reilly et al., 1998). To eliminate this artifact when
developing algorithms for SeaWiFS, O'Reilly et al. (1998) conceived of
maximum band ratio (MBR) algorithms that avoid band switching
equations and their discontinuities by relating reflectance band ratios to
CHL using a single fourth-order polynomial equation that encompasses
a wide range of global CHL. Its form follows:

CHL a a X a X a X a Xlog ( ) ,10 0 1 2
2

3
3

4
4= + + + + (1)

where a0..4 are the polynomial fit coefficients and X is:

X R
R

log ( )
( )

.rs b

rs g
10=

(2)

In Eq. (2), λb and λg refer to a violet-blue and green wavelength,
respectively (with b and g adopted as subscripts based on heritage use
of strictly blue and green wavelengths). The blue wavelength is most
often the maximum Rrs value over a defined range and the green wa-
velength is usually the instrument band that falls within 545 and
570 nm. Using SeaWiFS as an example, the maximum band ratio ver-
sion of Eq. (2) becomes:

X Rrs Rrs Rrs
Rrs

log max[ , , ]
10

443 490 510

555
=

(3)

This SeaWiFS OC algorithm was referred to as OC4, where the “4”
indicates that four Rrs(λ) are considered in Eq. (3). Currently, the full
suite of OC algorithms employs from two to four wavelengths. The
three-band version, OC3, uses the MBR of bands near 443 and 490 nm,
while the two-band version, OC2, the CHL algorithm initially adopted
by NASA for SeaWiFS, assigns λb as the wavelength nearest to 490 nm.

As a simple illustration of how the λb to λg ratio varies and why
490 nm is assigned as λb in OC2, Table 3 presents the relationships
between in situ CHL and several two-band models that use the ratio of
the violet (412 nm), blue (443 nm), cyan (490 nm), and cyan/green
(510 nm) regions of the ocean color spectrum to the green region
(555 nm). Note that the dataset is described in detail below. Of these
four band ratios, the Rrs490:Rrs555 band ratio model yielded the highest
coefficient of determination (R2) with in situ CHL when considering the
full range of measured CHL in our dataset (Table 3). Relatively lower R2

were obtained for the remaining three CHL ranges for all the band ra-
tios, as a consequence of the small sample sizes of these subsets. When
considering the lowest CHL range (0.012 to 0.1 mg m−3, representative
of the most oligotrophic conditions) the highest R2 was found for the
Rrs412:Rrs555 and Rrs443:Rrs555 band ratios, with the latter only slightly
higher than the former. The Rrs490:Rrs555 band ratio had the highest R2

for 0.1 < CHL < 1.67 mg m−3 (mesotrophic), whereas the
Rrs510:Rrs555 ratio had the highest R2 for CHL exceeding 1.67 mg m−3

(eutrophic) (Table 3).

2.2. In situ data source

We acquired the ‘satbands_6_nm.tab’ database file from the Valente
and 42 co-authors (2015) datasets, which provides observations with
spectral information aggregated to within 6 nm of the instrument band
centers of SeaWiFS, MODIS, and MERIS. We specifically focused on the
SeaWiFS subset of the Valente database, which consists of 2720 paired
CHL and Rrs(λ) observations. When available, we preferentially se-
lected high performance liquid chromatography (HPLC) measurements
of CHL over fluorometric measurements. The final dataset we used to
develop Version -7 of the OC algorithms included 1341 HPLC and 1379
fluorometric observations of CHL that range from 0.012 to
77.9 mg m−3. The assigned version number historically refers to the
database used to tune statistically the polynomial coefficients of the OC
algorithms (Eq. (1)). The Version -1 algorithms were tuned to the
SEABAM dataset which had 919 in situ measurements of CHL and Rrs
(λ) (O'Reilly et al., 1998). The Version -4 dataset had 2853 paired
observations from an extended version of SEABAM (O'Reilly et al.,

Table 3
Coefficient of determination (R2) between modeled and in situ CHL for four Rrs
band ratios across four CHL ranges. Each band ratio model was empirically
fitted to the in situ data ((N = 298, 1462, 966, and 2720, respectively, for the
four CHL ranges)) using a 4th-order polynomial curve as described in the
Methods section. The CHL ranges are indicated in brackets, in units of mg m−3.

Band ratio [0.012 to 0.1]:
R2

[0.1 to 1.67]:
R2

[1.67 to
77.9]: R2

[0.012 to 77.9]:
R2

Rrs412:Rrs555 0.480 0.558 0.164 0.734
Rrs443:Rrs555 0.496 0.627 0.276 0.808
Rrs490:Rrs555 0.294 0.648 0.394 0.847
Rrs510:Rrs555 0.040 0.572 0.448 0.823
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2000) and the Version -6 dataset had 1948 in situ observations from
NOMAD (Werdell and Bailey, 2005). For reference, the OC versions
adopted by NASA in 2009 for their standard processing are Version -6.

2.3. Chlorophyll a (CHL)

The relative frequency distribution of the 2720 in situ CHL data used
for algorithm tuning is illustrated in Fig. 1, along with the relative
frequency distribution of CHL from satellite data collected by seven
ocean color sensors during the past forty years. We acquired global,
daily satellite standard mapped images (SMI, 9-km spatial resolution)
from the NASA OBPG. Both distributions span nearly four orders-of-
magnitude; however the in situ data have a broader distribution and a
higher geometric mean (Gmean) and median (Gmean = 0.861 mg m−3,
median = 0.890 mg m−3) than the satellite data
(Gmean = 0.1796 mg m−3, median = 0.1740 mg m−3) and have rela-
tively more CHL values above 1 mg m−3 than the remotely-sensed data.

2.4. Remote sensing reflectances

The SeaWiFS subset of Valente and 42 co-authors (2015) provides
Rrs(λ) at 412, 443, 490, 510, 555 and 670 nm. For reference, Fig. 2
illustrates the arithmetic mean, geometric mean, and median Rrs for
this dataset. These spectra illustrate that the geometric mean of Rrs
better represents the median than the arithmetic mean, suggesting that
the Rrs data for all six SeaWiFS bands are log-normally distributed and
that geometric means better indicate the central tendency of their dis-
tributions than arithmetic means. Generation of OC Version -7 coeffi-
cients for all of the satellite instruments of interest requires Rrs else-
where in the spectrum than what exists in this dataset. While it remains
undesirable to estimate Rrs at wavelengths not directly measured,
doing so remains unavoidable within an activity such as this that relies
on large and diverse data sets (diverse in time, instrument manu-
facturer, and data collector) and maintains a requirement to capture
and consistently address as many spectrally diverse ocean color satellite
instruments as possible. Using this dataset and the INTERPOL routine in
IDL Version 8.7, we generated 273 interpolated data values (IRrs),
between 408 and 680 nm to match the band centers of all satellite in-
struments of interest (Table 2), as elaborated upon below. We ac-
knowledge that alternate methods exist to estimate Rrs, such as the
band-shift approach of Melin and Sclep (2015), but such methods re-
quire bio-optical models that cannot be unequivocally applied across all
water types in a dataset at diverse at Valente and 42 co-authors (2015)
without careful evaluation (and no certain promise of reduced un-
certainties or improvement in a ratio-ing algorithm). Consideration of
these alternate methods should be included in a subsequent study.

The interpolation method used to generate IRrs data from Rrs data is
a prime determinant of the accuracy and comparability of our CHL
algorithms. We investigated two methods for interpolating IRrs esti-
mates from the measured Rrs data in our dataset: a linear interpolation
of the untransformed Rrs data to yield IRrs (hereafter referred to as the
‘Linear’ method), and a linear interpolation of log-transformed Rrs data
followed by anti-logging the interpolated values to derive IRrs (here-
after referred to as the ‘LOG’ method). Table 4 presents statistical re-
gression results of a test to explore and evaluate these two methods. The
test is based on a two-point interpolation scheme to estimate IRrs from
adjacent measured Rrs values from the SeaWiFS subset for the 443, 490,
510, and 555 nm bands, followed by a statistical comparison of the IRrs
value with the measured Rrs value for the SeaWiFS band within the
interpolation interval. These comparisons provide useful information
for comparing the relative performance of these two interpolation
methods. Note that the distances between measured Rrs values in this 2-
point test (78, 67, 65, and 160 nm) are much greater than the distances
between measured Rrs actually used in our final interpolation (31, 47,
20, 45, and 115 nm) across the six SeaWiFS bands. Table 4 shows that
the Linear interpolation method results in high R2 and regression slopes

near 1.0 when the interpolation distance is between 65 and 78 nm, but
relatively low R2 and slopes that deviate from 1.0 when interpolating
the IRrs for the 555 nm band across the relatively large interval from
510 nm to 670 nm (a 160 nm span). The LOG method results in higher
R2 and slopes closer to unity than the Linear method for this wide
510–670 nm interpolation interval, as well as comparable performance
metrics elsewhere in the spectrum (Table 4).

Based on the exploratory results presented in Table 4 and the log-
normal nature of the Rrs data shown in Fig. 2, we adopted the LOG
interpolation method to generate the 273 IRrs data used to tune the
CHL algorithms. IRrs values were calculated for each of the 2720 re-
cords in the SeaWiFS in situ subset where all six Rrs measurements were
greater than zero. It is important to stress that the IRrs values are
identical to the measured Rrs values at the six SeaWiFS bands since the
interpolation passes through each of these measured Rrs data points. To
evaluate the accuracy of our interpolated IRrs values, we compared our
derived IRrs values with measured Rrs data available in the SeaWiFS,
MERIS, and MODIS subsets of the Valente and 42 co-authors (2015)
database (Table 5). A slope value of 1.0 indicates that the IRrs data for
that sensor are identical to the SeaWiFS Rrs data. The remaining nine
slopes range between 0.9195 and 1.0053, indicating an approximate
accuracy for the IRrs values of between 1 and 8%. The exact error
contributed by the use of interpolated data (IRrs) in the 65 CHL algo-
rithms we developed, however, remains difficult to quantify, as 61 of
these used one or more IRrs values that were identical to the un-in-
terpolated SeaWiFS Rrs in the original Valente data set (Table 5).

2.5. Algorithm tuning

Our tuning of the OC algorithms used 2720 pairs of coincident CHL
and IRrs. We tuned the fourth-order polynomial regression coefficients
(Eq. (1)) for each algorithm model by using an IDL minimization rou-
tine (AMOEBA) to achieve simultaneously: a slope of 1; an intercept of
0; a maximum R2 for the Reduced Major Axis linear regression between
the log-transformed measured CHL and log-transformed model CHL;
and, a minimum root mean square error between log-transformed
measured CHL and log-transformed model CHL quantiles. The final

Fig. 1. Relative frequency distributions of CHL for the in situ database used to
tune the algorithms (dotted curve) and for the forty-year geometric mean of
SMI pixels from CHL data for the period from 1978-10-30 to 2018-03-16, based
on 24,455 NASA Level-3 global daily SMI netCDF images from seven satellite
instruments: CZCS, OCTS, SeaWiFS, MODIS-Terra, MODIS-Aqua, MERIS &
VIIRS (solid black curve).
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polynomial fit approximates a Type-2 non-linear regression that as-
sumes errors in both the x (MBR) and y (CHL) variables. Excellent re-
producibility of results was achieved by specifying double precision
computation during curve fitting. One hundred replicate runs for
OC4_SEAWIFS yielded five polynomial coefficients as well as linear
regression slopes, intercepts, and R2 between log-transformed measured
CHL and log-transformed model CHL that were identical to the fifth
decimal place. All 100 replicate runs required the same number of
iterations (688) to reach a stable minimization-solution.

2.6. Clear water anchor points

Seven additional clear water data points were added to the 2720
CHL-IRrs pairs during tuning to extrapolate and anchor the curve below
the lowest measured CHL (0.012 mg m−3) such that the algorithm ranges
encompass the most oligotrophic oceanic waters (Claustre and
Maritorena, 2003). We adopted 0.0001 mg m−3 for the clear water CHL
value, approximately two-orders-of magnitude below the lowest mea-
sured CHL in our dataset. This value for the clear water CHL was oper-
ationally defined to be the CHL that yielded smooth, extrapolated model
curves with monotonically decreasing modeled CHL with increasing
MBR. For the corresponding clear water MBR value, we computed clear
water reflectances at λb and λg for each algorithm following Morel and
Maritorena (2001). For example, the clear water reflectance ratio for
OC4_SEAWIFS (21.35) used Rrs443 and Rrs555 and the clear water re-
flectance ratio for OC5_SEAWIFS (33.98) used Rrs412 and Rrs555. We
acquired seawater absorption values from 350 to 550 nm from Lee et al.
(2015) (their Table 1) and above 550 nm from Pope and Fry (1997). We
tabulated seawater backscattering measurements using publicly

available software (http://finalfrontier.ucsd.edu/Projects/NF-POGO/
morel2001.pro, courtesy of Stephane Maritorena) that is based on
Morel (1974). The seven clear water data points were excluded from the
combined set after tuning so they did not affect final statistical results.

2.7. Long-term CHL means

Passive ocean color satellite instruments rely on daylight for mea-
surements of remote-sensing reflectances. Consequently, there are sig-
nificant regional, seasonal, and latitudinal differences and biases in
chlorophyll retrievals from these instruments (Gregg and Casey, 2007).
Seasonal or inter-annual variations in cloud cover, for example, can
influence long-term averages in various geographic regions. Diurnal
variability can contribute to differences in retrievals from, for example,
SeaWiFS (13:00 local overpass time) compared to MERIS (10:00 local
overpass time) as well. The following statistical averaging strategy was
employed to minimize latitudinal and seasonal biases and gaps in
coverage when computing long-term means:

1) Daily, global SMI data (4502 days) were first averaged by pixel by
month. For the SeaWiFS mission there were 157 available months.
For the 40-year CHL mean there were 347 available months;

2) The monthly means were then averaged by pixel, by month, to form
12 climatological monthly means; and,

3) The 12 climatological monthly means were then averaged by pixel
to compute the long-term means.

Fig. 2. A comparison of the mean, geometric mean (Gmean), and median of the
2720 Rrs values for the six bands in the SeaWiFS subset of the Valente and 42
co-authors (2015) dataset.

Table 4
Reduced Major Axis linear regression comparisons between log-transformed IRrs estimates from two adjacent Rrs values and measured Rrs data available in the
SeaWiFS subset of the Valente and 42 co-authors (2015) database.

Lower Rrs Upper Rrs Distance (nm) Interpolated IRrs Method N INT SLOPE R2

412 490 78 443 Linear 2720 −0.0831 0.9565 0.9879
443 510 67 490 Linear 2720 −0.1561 0.9486 0.9739
490 555 65 510 Linear 2720 0.0405 1.007 0.9561
510 670 160 555 Linear 2720 −0.5623 0.7805 0.7159

412 490 78 443 LOG 2720 −0.0718 0.9659 0.9853
443 510 67 490 LOG 2720 −0.1929 0.9384 0.967
490 555 65 510 LOG 2720 0.0036 1.0017 0.9844
510 670 160 555 LOG 2720 −0.3581 0.9283 0.9375

Table 5
Reduced Major Axis linear regression comparisons between interpolated IRrs
estimates (LOG method) and measured Rrs data available in the MERIS or
MODIS subsets of the Valente and 42 co-authors (2015) database (The regres-
sion used log-transformed data).

PAIR N INT SLOPE R2

Rrs412_MERIS versus IRrs412 2720 0 1 1
Rrs442_MERIS versus IRrs442 2720 0 1.0025 0.9999
Rrs490_MERIS versus IRrs490 2720 0 1 1
Rrs510_MERIS versus IRrs510 2720 0 1 1
Rrs560_MERIS versus IRrs560 2720 0 0.9346 0.9986
Rrs620_MERIS versus IRrs620 1392 0.0003 0.9551 0.9774
Rrs665_MERIS versus IRrs665 2720 0 1.0053 0.9983
Rrs412_MODIS versus IRrs412 2720 0 1 1
Rrs443_MODIS versus IRrs443 2720 0 1 1
Rrs488_MODIS versus IRrs488 2720 0 0.9913 0.9995
Rrs531_MODIS versus IRrs531 1248 0.0001 0.9559 0.9979
Rrs547_MODIS versus IRrs547 798 0.0001 0.9652 0.9985
Rrs667_MODIS versus IRrs667 2720 0 0.994 0.9986
Rrs678_MODIS versus IRrs678 1619 −0.0001 0.9195 0.9731
Rrs412_SEAWIFS versus IRrs412 2720 0 1 1
Rrs443_SEAWIFS versus IRrs443 2720 0 1 1
Rrs490_SEAWIFS versus IRrs490 2720 0 1 1
Rrs510_SEAWIFS versus IRrs510 2720 0 1 1
Rrs555_SEAWIFS versus IRrs555 2720 0 1 1
Rrs670_SEAWIFS versus IRrs670 2720 0 1 1
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CHL data were log-transformed during averaging as this provided
the best estimator of the central tendency of the frequency distribution
of the data (that is, the geometric mean was similar to the median of the
distribution).

3. Results

We derived 65 OC algorithms encompassing 25 satellite ocean color
sensors: COCTS, CZCS, ENMAP, GLI, GOCI, HAWKEYE, HICO, MERIS,
MERSI, MISR, MODIS, MOS, OCI, OCM, OCTS, OLCI, OLI, OSMI,

Table 6
Sixty-five OC maximum band ratio and band ratio algorithms. M, R2, and A represent the mean of Rrs from two bands in the denominator of the OC6 formulas, the
coefficient of determination between log-transformed measured and modeled CHL, and the polynomial coefficients for Eq. (1), respectively (in the formulas for OC6
algorithms, M(555&670), for example, represents the mean of Rrs555 and Rrs670).

Algorithm Formula R2 A

OC6_SEAWIFS MBR = Rrs(412 > 443 > 490 > 510)/M(555&670) 0.8508 0.92160; −3.17884; 2.39690; −1.30318; 0.20160
OC6_MODIS MBR = Rrs(412 > 442 > 488 > 531)/M(554&667) 0.8463 1.22914; −4.99423; 5.64706; −3.53426; 0.69266
OC6_MERIS MBR = Rrs(412 > 442 > 490 > 510)/M(560&665) 0.8519 0.95087; −3.05489; 2.18141; −1.11783; 0.15132
OC6_COCTS MBR = Rrs(412 > 443 > 490 > 520)/M(565&670) 0.8504 1.11801; −3.48138; 2.74672; −1.38603; 0.19322
OC6_SGLI MBR = Rrs(412 > 443 > 490 > 530)/M(565&674) 0.847 1.28506; −4.20996; 3.83254; −2.03507; 0.32442
OC6_SABIA_MAR MBR = Rrs(412 > 443 > 490 > 510)/M(555&665) 0.8512 0.90755; −3.17549; 2.43524; −1.34385; 0.21096
OC6_PACE_OCI MBR = Rrs(412 > 443 > 490 > 510)/M(555&678) 0.8502 0.94297; −3.18493; 2.33682; −1.23923; 0.18697
OC6_OSMI MBR = Rrs(412 > 443 > 490 > 510)/M(555&670) 0.8508 0.92160; −3.17884; 2.39690; −1.30318; 0.20160
OC6_OLCI MBR = Rrs(413 > 443 > 490 > 510)/M(560&665) 0.8525 0.95039; −3.05404; 2.17992; −1.12097; 0.15262
OC6_OCTS MBR = Rrs(412 > 443 > 490 > 516)/M(565&667) 0.8514 1.05968; −3.24992; 2.41784; −1.19442; 0.15412
OC6_OCM MBR = Rrs(412 > 443 > 490 > 510)/M(555&660) 0.8515 0.89280; −3.17118; 2.47461; −1.38801; 0.22203
OC6_MOS MBR = Rrs(408 > 443 > 485 > 520)/M(570&615) 0.8493 0.95411; −3.45810; 2.95256; −1.35470; 0.07931
OC6_MERSI MBR = Rrs(412 > 443 > 490 > 520)/M(565&650) 0.8519 1.05578; −3.52403; 3.02209; −1.63058; 0.24777
OC6_HICO MBR = Rrs(416 > 444 > 490 > 513)/M(553&668) 0.8529 0.96178; −3.43787; 2.80047; −1.59267; 0.26869
OC6_HAWKEYE MBR = Rrs(412 > 443 > 490 > 510)/M(555&670) 0.8508 0.92160; −3.17884; 2.39690; −1.30318; 0.20160
OC6_GOCI MBR = Rrs(412 > 443 > 490 > 555)/M(660&680) 0.7906 1.60887; −1.68050; −0.31117; 0.56459; −0.15294
OC6_GLI MBR = Rrs(412 > 443 > 490 > 520)/M(565&666) 0.8508 1.10656; −3.48994; 2.79927; −1.43087; 0.20257
OC6_ENMAP MBR = Rrs(424 > 445 > 489 > 513)/M(554&672) 0.8563 0.96229; −3.38589; 2.66366; −1.50367; 0.24946
OC5_SEAWIFS MBR = Rrs(412 > 443 > 490 > 510)/Rrs555 0.8364 0.33899; −3.11338; 3.35701; −2.01792; −0.03811
OC5_OLCI MBR = Rrs(413 > 443 > 490 > 510)/ Rrs 560 0.8437 0.43213; −3.13001; 3.05479; −1.45176; −0.24947
OC5_MODIS MBR = Rrs(412 > 442 > 488 > 531)/ Rrs 554 0.8307 0.42919; −4.88411; 9.57678; −9.24289; 2.51916
OC5_MERIS MBR = Rrs(412 > 442 > 490 > 510)/ Rrs 560 0.8429 0.43282; −3.12934; 3.04872; −1.43479; −0.25474
OC5_GOCI MBR = Rrs(412 > 443 > 490 > 555)/ Rrs 660 0.793 1.60197; −1.80486; −0.37900; 0.72207; −0.20484
OC5_SABIA_MAR MBR = Rrs(412 > 443 > 490 > 510)/ Rrs 555 0.8364 0.33899; −3.11338; 3.35701; −2.01792; −0.03811
OC5_PACE_OCI MBR = Rrs(412 > 443 > 490 > 510)/ Rrs 555 0.8364 0.33899; −3.11338; 3.35701; −2.01792; −0.03811
OC5_OSMI MBR = Rrs(412 > 443 > 490 > 510)/ Rrs 555 0.8364 0.33899; −3.11338; 3.35701; −2.01792; −0.03811
OC5_GLI MBR = Rrs(412 > 443 > 490 > 520)/ Rrs 565 0.8479 0.57617; −3.72075; 4.39869; −2.57369; 0.10102
OC5_ENMAP MBR = Rrs(424 > 445 > 489 > 513)/ Rrs 554 0.8436 0.33638; −3.34851; 4.17646; −3.10417; 0.32935
OC5_COCTS MBR = Rrs(412 > 443 > 490 > 520)/ Rrs 565 0.8479 0.57617; −3.72075; 4.39869; −2.57369; 0.10102
OC5_HAWKEYE MBR = Rrs(412 > 443 > 490 > 510)/ Rrs 555 0.8364 0.33899; −3.11338; 3.35701; −2.01792; −0.03811
OC5_HICO MBR = Rrs(416 > 444 > 490 > 513)/ Rrs 553 0.8389 0.34355; −3.40385; 4.34820; −3.26853; 0.41553
OC5_MERSI MBR = Rrs(412 > 443 > 490 > 520)/ Rrs 565 0.8479 0.57617; −3.72075; 4.39869; −2.57369; 0.10102
OC5_MOS MBR = Rrs(408 > 443 > 485 > 520)/ Rrs 570 0.8465 0.66874; −3.67737; 3.84550; −1.77616; −0.13769
OC5_OCM MBR = Rrs(412 > 443 > 490 > 510)/ Rrs 555 0.8364 0.33899; −3.11338; 3.35701; −2.01792; −0.03811
OC5_OCTS MBR = Rrs(412 > 443 > 490 > 516)/ Rrs 565 0.8477 0.55123; −3.44308; 3.61405; −1.78572; −0.15201
OC4_SEAWIFS MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_COCTS MBR = Rrs(443 > 490 > 520)/Rrs565 0.8603 0.57049; −3.79984; 4.25538; −1.87362; −0.62622
OC4_VIIRS MBR = Rrs(410 > 443 > 486)/Rrs551 0.8245 0.26101; −2.53974; 1.63454; −0.21157; −0.66549
OC4_SGLI MBR = Rrs(412 > 443 > 490)/Rrs565 0.8411 0.43171; −2.46496; 1.25461; 0.36690; −0.80127
OC4_SABIA_MAR MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_OCM MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_OCI MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_MOS MBR = Rrs(443 > 485 > 520)/Rrs570 0.861 0.66316; −3.75896; 3.67693; −1.03117; −0.84256
OC4_MERSI MBR = Rrs(443 > 490 > 520)/Rrs565 0.8603 0.57049; −3.79984; 4.25538; −1.87362; −0.62622
OC4_HICO MBR = Rrs(444 > 490 > 513)/Rrs553 0.8506 0.33527; −3.48692; 4.20858; −2.64340; −0.35546
OC4_HAWKEYE MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_GOCI MBR = Rrs(412 > 443 > 490)/Rrs555 0.8313 0.28043; −2.49033; 1.53980; −0.09926; −0.68403
OC4_GLI MBR = Rrs(443 > 490 > 520)/Rrs565 0.8603 0.57049; −3.79984; 4.25538; −1.87362; −0.62622
OC4_ENMAP MBR = Rrs(445 > 490 > 513)/Rrs554 0.8506 0.33518; −3.42262; 3.96328; −2.20298; −0.61986
OC4_PACE_OCI MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_MERIS MBR = Rrs(442 > 490 > 510)/Rrs560 0.8564 0.42487; −3.20974; 2.89721; −0.75258; −0.98259
OC4_OLCI MBR = Rrs(443 > 490 > 510)/Rrs560 0.8566 0.42540; −3.21679; 2.86907; −0.62628; −1.09333
OC4_OCTS MBR = Rrs(443 > 490 > 516)/Rrs565 0.8601 0.54655; −3.51799; 3.39128; −0.91567; −0.97112
OC4_OSMI MBR = Rrs(443 > 490 > 510)/Rrs555 0.8508 0.32814; −3.20725; 3.22969; −1.36769; −0.81739
OC4_MODIS MBR = Rrs(412 > 442 > 488)/Rrs554 0.8292 0.27015; −2.47936; 1.53752; −0.13967; −0.66166
OC3_POLDER MBR = Rrs(443 > 490)/Rrs565 0.8546 0.41712; −2.56402; 1.22219; 1.02751; −1.56804
OC3_VIIRS MBR = Rrs(443 > 486)/Rrs551 0.843 0.23548; −2.63001; 1.65498; 0.16117; −1.37247
OC3_CZCS MBR = Rrs(443 > 520)/Rrs550 0.8436 0.31841; −4.56386; 8.63979; −8.41411; 1.91532
OC3_SGLI MBR = Rrs(443 > 490)/Rrs565 0.8546 0.41712; −2.56402; 1.22219; 1.02751; −1.56804
OC3_POLDER_2 MBR = Rrs(443 > 490)/Rrs565 0.8546 0.41712; −2.56402; 1.22219; 1.02751; −1.56804
OC3_MODIS MBR = Rrs(442 > 488)/Rrs554 0.8454 0.26294; −2.64669; 1.28364; 1.08209; −1.76828
OC3_OLI MBR = Rrs(443 > 482)/Rrs561 0.8466 0.30963; −2.40052; 1.28932; 0.52802; −1.33825
OC2_POLDER BR = Rrs(443/Rrs565) 0.8174 0.19868; −1.78301; 0.84573; 0.19455; −0.95628
OC2_POLDER_2 BR = Rrs(443/Rrs565) 0.8174 0.19868; −1.78301; 0.84573; 0.19455; −0.95628
OC2_MISR BR = Rrs(446/Rrs557) 0.8126 0.10922; −1.82977; 0.95797; 0.00543; −1.13850
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PACE_OCI, POLDER, POLDER_2, SABIA_MAR, SEAWIFS, SGLI, and
VIIRS (see Acronyms and Abbreviations and Table 2). Several algo-
rithms were generated for each instrument, defined by the number of
wavelengths employed (e.g., versions of OC6, OC5 and, OC4 for Sea-
WiFS). For brevity, we limit much of our presentation of results to
SeaWiFS OC4, OC5, and OC6. Given our use of a constant (invariant)
approach to tune each OC algorithm and given that many of the results
presented in Table 6 simply update previous fit coefficients, we believe
a discussion of results for SeaWiFS alone represents many of the results
for the updated OC algorithms. Both OC5 and OC6 merit specific at-
tention as they employ more spectral information than previous OC
algorithms. We also explore algorithm consistencies and present vali-
dation results for several sensors.

3.1. OC4_SEAWIFS

Version -7 of the OC4_SEAWIFS MBR algorithm is illustrated in
Fig. 3. The R2 between measured and model-CHL is 0.851. This is lower
than that for Version -1 (0.932), and Version -4 (0.892), most likely
because Version -7 encompasses greater bio-optical diversity than is
present in the earlier datasets. The OC4_SEAWIFS MBR algorithm
provides a useful illustration of how maximum band ratio algorithms
operate (Fig. 3b and Fig. 4): at low CHL, the 443 nm band dominates
over the 490 nm and 510 nm bands; whereas at intermediate CHL, be-
tween ~0.3 and ~1.5 mg m−3, the 490 nm band dominates; and, at
high CHL concentrations, above approximately 1.6 mg m−3, the 510 nm
dominates. By using the brightest band – that is, the greatest of Rrs443,
Rrs490 or Rrs510 in the numerator of the MBR (Eq. (3)) – OC4 maintains
the highest possible dynamic range (in a way, offering the highest
possible signal-to-noise) over nearly four orders-of-magnitude range in
chlorophyll concentration. Maximum band ratio algorithms such as
OC4 are effective over a wide range in CHL because accessory pigments
such as carotenoids, which absorb at longer wavelengths than CHL, are
correlated with CHL (Aiken et al., 1995).

3.2. OC5_SEAWIFS

Rrs412 has infrequently been used in empirical CHL algorithms. We
are aware of one study that evaluated its use (Siswanto et al., 2011).
Our OC5 algorithms, such as OC5_SEAWIFS (Fig. 5), exploit up to four
bands in the numerator of the MBR and one band in the denominator.
In addition to the blue (443 nm), cyan (490 nm) and cyan/green
(510 nm) bands used in OC4, OC5 uses the violet (412 nm) band. Rrs412

is generally greater than Rrs443 and, therefore, dominates the MBR from
lowest CHL to approximately 0.3 mg m−3. Consequently, the role
played by Rrs443 in OC5 is subordinate to that played by Rrs412. Similar
to OC4, Rrs490 dominates over other bands at intermediate levels of
CHL from ~0.3 to ~1.6 mg m−3 and Rrs510 generally dominates above
~1.6 mg m−3. The R2 for OC5 (0.838) is slightly less than that for OC4
(0.851); however, the magnitude of the MBR for OC5 is greater than
that for OC4, suggesting that the signal-to-noise at low CHL (offered by
this increase in dynamic range) is likely better for OC5 than OC4.

3.3. OC6_SEAWIFS

OC6 algorithms, such as OC6_SEAWIFS (Fig. 6), use the same bands
in the numerator of its MBR as OC5_SEAWIFS. OC6_SEAWIFS, however,
employs the mean of Rrs555 and Rrs670 in the denominator of the MBR,
approximating radiances for a band at 613 nm. Consequently, the MBR
ratios are greater with this shift to bands with longer wavelengths and
lower Rrs. The R2 between model and in situ data for OC6_SEAWIFS
(0.851) is slightly higher than the R2 for OC5_SEAWIFS (0.836) and
equivalent to that of OC4_SEAWIFS. The variation in the dominant
band with variation in CHL is illustrated for OC6_SEAWIFS in Fig. 6b
and Fig. 7. Because OC5_SEAWIFS has the same bands in the numerator
of its MBR as OC6_SEAWIFS, its dominant bands are similar to

OC6_SEAWIFS. The high degree of overlap in the dominant band in the
OC4, OC5 and OC6 algorithms minimizes the potential for artifacts,
such as discontinuities from shifts in the brightest band used in the
MBR. For comparison, the global distributions of CHL from OC6_SEA-
WIFS and OC4_SEAWIFS, based on Rrs data from the entire SeaWiFS
mission, are provided in Fig. 8.

3.4. Maximum band ratio algorithms

In addition to the CHL algorithms for SeaWiFS reviewed above,
instrument-specific OC algorithms were developed for 24 other ocean
color sensors. Table 6 summarizes the bands (wavelengths) used, the
formulas, the R2, and the polynomial coefficients derived for 65 Version
-7 OC algorithms. The R2 between the log-transformed in situ CHL and
the log-transformed model CHL ranged between 0.791 and 0.861.
Forty-three of these employ unique combinations of bands in their

Fig. 3. OC4_SEAWIFS MBR CHL algorithm. (a) The asterisks represent the
measured in situ data and the continuous curve represents the model. The
fourth-order polynomial coefficients and bands used in the MBR equation are
also shown. (b) Same as (a), but color coded to indicate the band used in the
numerator of the MBR. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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MBR. Table 7 lists algorithms having the same combinations of bands.
The typically sigmoid shapes of the unique 43 MBR algorithms are
portrayed in Fig. 9. Maximum band ratios progressively increase from
the OC3 series to the OC6 series, that is, an increasing number of wa-
velengths are considered in the numerator with attendant decreases in
Rrs in the denominators of the MBRs. Most of these curves exhibit a
characteristic sigmoid relationship between band ratios and CHL in log-
log space (O'Reilly et al., 1998; Fig. 11 of Valente and 42 co-authors,
2015). The most linear of these, OC6_GOCI, uses the longest wave-
length-bands RRS660&680 in the denominator of the MBR (Table 6).

3.5. Algorithm consistency

A high degree of internal consistency among algorithms is an im-
portant prerequisite for merging data from multiple sensors. Excellent
agreement and internal consistency exist across the 43 unique MBR
algorithms. We compared model output from each unique MBR

algorithm against all other algorithms, which totaled 903 combina-
tions. In these 903 pairwise comparisons, 95% of the R2 exceeded
0.853, and 90% of the regression slopes, approximately 1.0, were be-
tween 0.982 and 0.985 (Table 8). This consistency compares well with
previous algorithm development activities (e.g., https://oceancolor.
gsfc.nasa.gov/atbd/chlor_a/) and offers some verification of our
chosen fitting routine, particularly given the diversity of shapes and
steepnesses across the full suite of OC algorithm forms (Fig. 9).

3.6. Algorithm validation - matchups with in situ data

A critical feature of CHL algorithms is their efficacy in retrieving
satellite-derived estimates that agree well with in situ measurements.
We obtained coincident Level-2 satellite-to-in situ CHL match-ups from
the OBPG for SeaWiFS and MODIS-Aqua. All satellite data were

Fig. 4. The relative frequency of the dominant band used in the OC4_SEAWIFS
model.

Fig. 5. OC5_SEAWIFS MBR CHL algorithm. The asterisks represent the mea-
sured in situ data and the continuous curve represents the model. The fourth-
order polynomial coefficients and bands used in the MBR equation are also
shown.

Fig. 6. OC6_SEAWIFS MBR CHL algorithm. (a) The asterisks represent the
measured in situ data and the continuous curve represents the model. The
fourth-order polynomial coefficients and bands used in the MBR equation are
also shown. Note that M(555&670) indicates the use of the mean of Rrs555 and
Rrs670. (b) Same as (a), but color coded to indicate the band used in the nu-
merator of the MBR. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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processed using their latest 2018 reprocessing configurations and sa-
tellite data post-processing followed the methods and exclusion criteria
of Bailey and Werdell (2006). We consider three performance metrics
following Seegers et al. (2018). First, we calculated median absolute
error (MAE) as:

MAE
in situ

n
10^

| log (satellite) log ( ) |
,i

n
1 10 10= =

(4)

where n is the sample size, and bias as:

bias
in situ

n
10^

log (satellite) log ( )
,i

n
1 10 10= =

(5)

Note that observations are log-transformed such that MAE and bias
presents multiplicative metrics (that is, a MAE of 1.5 indicates that the
satellite observations are 1.5× (50% greater) on average than the in situ
observations). Finally, we generated pair-wise comparisons of the
match-up pairs following the methods described in Seegers et al. (2018)
to calculate the percentage of best performance (hereinafter referred to
as “percent wins%”) for each model. Table 9 summarizes results of the
MAE and bias statistical comparisons, as well as percent wins% com-
pared to the OCI algorithm currently employed by NASA. OCI uses the
Hu et al. (2012) CI for CHL < 0.15 mg m−3, an OC Version -6 ap-
proach for CHL > 0.2 mg m−3 and a weighted blend of the two for the
transition zone that spans 0.15 ≤ CHL ≤ 0.2 mg m−3.

SeaWiFS and MODIS-Aqua Version -7 match-up results compare
favorably with the existing implementation of OCI. Broadly speaking,
all algorithms perform equivalently with regard to absolute biases. All
SeaWiFS biases fall below 5.5% with the largest difference between
algorithms (OCI and OC6) spanning only 2.9%. MODIS-Aqua biases rise
to a range of 10.2 to 18.5% partially due to the reduced sample size and
lower temporal and spatial variability relative to SeaWiFS. The
SeaWiFS OCI bias, for example, rises from 2.6 to 8.2% when con-
sidering only match-ups from the MODIS-Aqua era. OC6 exhibits the
lowest bias for MODIS-Aqua but also the only negative bias relative to
in situ data (recall that a value less than unity indicates a negative bias).
Match-up biases stem partially from the radiometric quality of the sa-
tellite instrument. For example, MODIS-Aqua Rrs satellite-to-in situ
match-ups (see https://seabass.gsfc.nasa.gov) report positive biases for
satellite Rrs412 and Rrs443 and negative biases for satellite Rrs547 and
Rrs667 relative to in situ data. This positive bias in the numerator and
negative bias in the denominator results in elevated satellite MBRs re-
lative to in situ MBRs and, thus, reduced CHL estimates from an OC

algorithm (Figs. 3, 5, and 6). When considering only
CHL ≤ 0.2 mg m−3, the SeaWiFS sample size falls to 439 and its biases
rise to span a range of 28% for OC5 to 45% for OCI. When considering
only CHL > 0.2 mg m−3, the SeaWiFS biases become 4.4%, 2.3%,
2.2%, and 1% for OCI, OC4, OC5, and OC6, respectively. Given that OCI
employs OC4 Version -6 in this CHL range, these results suggest that the
Version -7 algorithms improve upon biases relative to their earlier
versions.

All algorithms also perform similarly with regards to MAE. The
largest difference between all SeaWiFS and all MODIS-Aqua MAEs span
6.3 and 9.1%, respectively. This equates roughly to a ~4% difference
on average between MAEs for each instrument and suggests common
variability across algorithms. When considering only
CHL ≤ 0.2 mg m−3 or CHL > 0.2 mg m−3, SeaWiFS MAEs remain
largely unchanged, spanning 58% for OCI to 67% for OC6 and 65% for
OCI to 72% for OC5, respectively. For these two CHL ranges, MODIS-
Aqua MAEs spanned 48% for OCI to 57% for OC6 and 66% for OC4 to
76% for OC6, respectively. No exceptional superiority emerges with
regards to percent wins% when considering the full dynamic range of
CHL. For SeaWiFS, OCI more closely matched in situ CHL than OC5 and
OC6 for 58.5 and 55.3% of the satellite-to-in situ pairs respectively, and
OC4 more closely matched in situ CHL than OCI for 51.4% of these
pairs. MODIS-Aqua demonstrated similar results with OCI more closely
matching in situ CHL than OC4 and OC6 for 56.8 and 59.5% of satellite-
to-in situ pairs, respectively, and OC3 more closely matching in situ CHL
than OCI for 51.6% of these pairs. When considering only
CHL > 0.2 mg m−3, the OC4, OC5, and OC6 Version -7 approaches
more closely matched in situ CHL than their Version -6 counterparts
for > 97% of the satellite-to-in situ pairs for SeaWiFS and for > 99% for
MODIS-Aqua, which again suggests that the Version -7 algorithms im-
prove upon their earlier versions.

On average and in relative terms, OCI-derived CHL differed from
that of SeaWiFS OC6, OC5, and OC4 by 16.4, 11.5, and 9.5% respec-
tively, and from that of MODIS-Aqua OC6, OC4, and OC3 by 37.3, 13.2,
and 9.7% respectively. The elevated difference for OC6_MODIS is ex-
pected given the magnitude of the difference in satellite-to-in situ
match-up biases for the two algorithms, namely the positive bias
(1.185) for OCI compared to the negative bias (0.899) for OC6_MODIS-
Aqua (Table 9). When only considering CHL ≤ 0.2 mg m−3, OCI-de-
rived CHL differed from that of SeaWIFS OC6, OC5, and OC4 by 20.4,
19.4, and 18.2%, respectively, and from that of MODIS-Aqua OC6, OC4,
and OC3 by 17.3, 15.0, and 17.7%, respectively, on average. In this
CHL range, recall that these percentages translate roughly to only
0.02 mg m−3 in absolute terms (0.2 ∗ 0.1 mg m−3 = 0.02 mg m−3).

4. Discussion

We developed 65 Version -7 OC algorithms for 25 satellite instru-
ments using a global in situ dataset that, to our knowledge, represents
the widest diversity of marine bio-optical conditions available at this
time. Our motivation was to ensure that the next generation of this
well-established and widely-adopted OC approach: (1) consider the
most modern dataset possible and represent the largest dynamic range
of ocean color water types; (2) extend to additional satellite instru-
ments, including those for upcoming missions, with robust internal
consistency across missions, and, (3) revisit the potential use of addi-
tional spectral information given improvements in atmospheric cor-
rection and instrument calibration and characterization that previously
limited the confidence in the use of the bluest or red wavelengths.
Ultimately, we believe that the Version -7 OC algorithms better re-
present global spatial and temporal bio-optical diversity than their
predecessors, with increased information content through the use of a
modern training dataset and the consideration of additional wave-
lengths.

Including additional satellite instruments and achieving internal
consistency across missions offers several obvious advantages. First, the

Fig. 7. The relative frequency of the dominant band used in the OC6_SEAWIFS
model.
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quality of merged CHL data products from multiple overlapping ocean
color missions will improve. Such mergers remain critical for max-
imizing spatial and temporal coverages of the open ocean (Table 1)
(IOCCG, 2007). Second, the expanded suite of Version -7 algorithms

will provide an improved opportunity to link consistently ocean color
satellite time-series from CZCS (1978) through the upcoming PACE
mission (scheduled for launch in 2022) and beyond. Conceptually, this
could stretch the climate data record of CHL to upwards of fifty years,
offering an unprecedentedly consistent data set for the assessment of
climate change. Many upcoming ocean color instruments include wa-
velength bands that will facilitate CHL retrievals through alternative
approaches. For example, the inclusion of wavelengths shorter than
412 nm should be more effective in resolving CDOM from CHL than is
currently possible within the remote sensing paradigm (McClain, 2009)
since they will be farther away from the CHL absorption peak and more
coincident with the region of strongest CDOM absorption. Several of the
newer planned and recently launched ocean color sensors (will) have
wavelength bands with centers < 412 nm, such as PACE, OLCI, and
SGLI. This notwithstanding, our modernization of a heritage approach
remains critical to ensure climate data record consistency as far back in
time as possible.

While the use of violet (e.g., 412 nm) and red (e.g., 670 nm) bands

Fig. 8. Global distribution of CHL from the (upper) OC6_SEAWIFS and (lower) OC4_SEAWIFS models. These are based on all Rrs data available during the SeaWiFS

Table 7
Algorithms that use the same set of bands (center wavelengths).

N Wavelengths Algorithms

3 443;490;565 OC3_POLDER; OC3_POLDER_2;OC3_SGLI
7 443;490;510;555 OC4_SEAWIFS; OC4_HAWKEYE; OC4_OCI;

OC4_OCM; OC4_OSMI; OC4_PACE_OCI;
OC4_SABIA_MAR

6 412;443;490;510;555 OC5_SEAWIFS; OC5_HAWKEYE; OC5_OCM;
OC5_OSMI; OC5_PACE_OCI; OC5_SABIA_MAR

3 412;443;490;510;555;670 OC6_SEAWIFS; OC6_HAWKEYE; OC6_OSMI
2 443;565 OC2_POLDER; OC2_POLDER_2
3 443;490;520;565 OC4_COCTS; OC4_GLI; OC4_MERSI
3 412;443;490;520;565 OC5_COCTS; OC5_GLI; OC5_MERSI
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increases the dynamic range of MBR in oligotrophic water (thus, in a
way, increasing the signal-to-noise of the algorithm), they have not
previously been considered for routine use in OC algorithms. A known
potential shortcoming of any MBR algorithm is its requirement for ac-
curate radiometric calibration and internal consistency across three
(OC3) to six (OC6) bands in lieu of a simpler two-band algorithm (OC2).
For example, SeaWiFS radiometric calibrations were not sufficiently
characterized at the time of its launch and, as such, NASA opted to use a
two-band algorithm instead of a better performing (compared to in situ
data) four-band MBR algorithm. Early in the mission, before the accu-
racy of and temporal stability in SeaWiFS radiometry were well char-
acterized, nearly 25% and 7% of the retrievals of Rrs412 and Rrs443

respectively, were negative in phytoplankton-rich continental shelf
water (O'Reilly and Yoder, 2003). Such negative retrievals also indicate
atmospheric over-correction of retrieved Rrs for all bands which would

have led to incorrect CHL estimates if not flagged during processing.
Despite this, pre-launch instrument characterizations, on-orbit calibra-
tions and atmospheric correction methods have all immensely im-
proved in the two decades since SeaWiFS launched making the time
right to start revisiting the use of Rrs412 and Rrs670 in OC algorithms.

We developed seventeen OC5 and eighteen OC6 CHL algorithms
that include a violet band in the numerator of the MBR with wave-
lengths ranging between 408 and 416 nm. The denominators of the
algorithms using only a green band in the denominator range from 553
to 660 nm (hereafter referred to as OC5 algorithms for convenience,
despite several OC4 algorithms meeting this criterion), whereas the
effective denominators of the OC6 algorithms that consider both green
and red bands in the denominator range from 592.5 to 670 nm
(Table 6). Broadly speaking, the Version -7 algorithms all perform si-
milarly when comparing model output to in situ CHL. With regard to
those with additional wavelengths, the OC6 algorithms may perform
better than their OC5 counterparts because the effective wavelength of
the average of the two Rrs in the MBR denominator resides on the re-
latively flat portion of the CHL absorption spectrum away from the
secondary CHL absorption peak and farther away from the ex-
ponentially decreasing adg(λ) than one green Rrs alone. Validation of
SeaWiFS and MODIS-Aqua CHL retrievals indicates similar statistical
performance across the Version -7 algorithms and OCI for a global
match-up dataset with almost four orders-of-magnitude in in situ CHL.
This, however, makes it difficult to recommend the unequivocal use of
one algorithm over the others and indicates that, perhaps, the inclusion
of violet and red Rrs does not offer a remarkable improvement over
existing blue-green algorithms. Rather, we adopt the philosophy put
forward in Seegers et al. (2018) and recommend that individuals
evaluate the performance of various CHL algorithms in their region of
study (e.g., selecting the approach that offers the best agreement with
regional in situ CHL and best spatial or temporal coverage) and/or
pursue educated decisions based on local knowledge or regional needs
(e.g., selecting OC4 versus OC5 versus OC6 based on expertise of in-
strument radiometric performance and/or CDOM-CHL covariance in a
region of study). We offer the Version -7 algorithms with the hope that
this large suite of approaches encompasses the most possible needs for
the largest possible audience. While algorithms presented here are
primarily intended for application at a global ocean scale, ‘global’ al-
gorithms such as OC4_SEAWIFS have also assisted regional researchers
in developing and evaluating regionally-specific chlorophyll algo-
rithms. Global algorithms often act as benchmark-references with
which to demonstrate potential improvements that regional algorithms
may yield over the global algorithm. Some examples include Darecki
and Stramski (2004), Garcia et al. (2005), D'Ortenzio et al. (2002), and
Siswanto et al. (2011).

4.1. Additional considerations on use of a violet band

As previously stated, the violet band (412 nm) has rarely seen use in
empirical CHL algorithms during the past forty years of ocean color
research, driven in part by poor post-launch radiometric performance of
violet and blue bands. In that time, conventional wisdom evolved to
argue against consideration of Rrs412 in CHL algorithms, as knowledge
of bio-optics and the relationships between CDOM and CHL improved.
With this in mind, we realize some readers will view the consideration
of Rrs412 in an MBR algorithm as controversial. Despite this, while re-
deriving coefficients for existing OC2, OC3, and OC4 band forms, we
felt it would be a disservice to not test and evaluate the approach with
increased spectral information to determine if Rrs412 (and Rrs670) offer
useful information and/or improve upon heritage approaches (which
would certainly support the long effort to improve on-orbit instrument
calibrations and atmospheric correction approaches). If anything, this
might stimulate renewed discussion of such conventional wisdom in
light of this work and other meaningful studies (e.g., Siegel et al., 2002,
Siegel et al., 2005b, Hu et al., 2006, Morel, 2009, to name only a few).

Fig. 9. Maximum band ratio versus CHL for 43 unique OC algorithms. Green
indicates a 3-band MBR, cyan a 4-band MBR, blue a 5-band MBR, and violet a 6-
band MBR. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 8
Percentiles for the R2 and slopes from 903 Reduced Major Axis linear regres-
sions of all possible pairings of log-transformed CHL from the forty-three unique
MBR algorithms. For the columns, % indicate percentiles, with the median
value = 50%.

STAT N 5% 25% 50% 75% 95%

R2 903 0.853449 0.858966 0.858966 0.858966 0.859563
SLOPE 903 0.982403 0.984346 0.984516 0.984922 0.984977

Table 9
Relative performance of several Version -7 OC algorithms versus OCI as cur-
rently implemented by NASA. % Wins is presented relative to OCI.

Algorithm N Bias MAE % Wins

OCI_SEAWIFS 2278 1.02610 1.64047
OC6_SEAWIFS 2278 1.05544 1.69528 44.6005
OC5_SEAWIFS 2278 1.02991 1.70390 41.5277
OC4_SEAWIFS 2278 1.03313 1.65678 51.4486
OCI_MODIS 955 1.18456 1.67799
OC6_MODIS 955 0.89861 1.73929 40.5236
OC4_MODIS 955 1.14990 1.73111 43.1414
OC3_MODIS 955 1.17567 1.64796 51.6230
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Additionally, SAA approaches that independently consider CDOM and
CHL in some cases failed to improve upon empirical CHL retrievals (e.g.,
Brewin et al., 2015), and we felt that consideration of Rrs412 and Rrs670

in the Version -7 algorithms could contribute to unraveling that con-
undrum.

We ultimately believed it timely to revisit the use of Rrs412 in em-
pirical CHL algorithms given the useful knowledge it carries about
chlorophyll a absorption in oligotrophic waters (the only areas where
Rrs412 will be used in the MBR numerator). As previously stated, we
also contend that the time is right to revisit and explore its use given
improvements in instrument characterization and advances in atmo-
spheric correction methods that previously precluded its consideration.
It is well understood that CDOM absorption decreases approximately
exponentially with increasing wavelengths and that its spectrum over-
laps with the chlorophyll absorption spectrum at wavelengths between
400 and 600 nm (e.g., Bricaud et al., 1981). It is also well known that
CDOM absorption can strongly influence the Rrs412 retrieval (Siegel
et al., 2002; Siegel et al., 2005a; Siegel et al., 2005b). Per Bricaud et al.
(1998), chlorophyll a has a very broad absorption spectrum with a
primary absorption peak at 443 nm, a secondary peak at 673 nm and
minimum absorption around 570 nm (Fig. 10). Most ocean color sen-
sors include a band centered in the blue region of the spectrum at
~443 nm (see Table 2) and, therefore, capture the peak of chlorophyll a
absorption. Consequently, the 443 nm band has been regarded as the
primary chlorophyll-detecting band in the passive remote sensing
paradigm. Rrs412 has often been used in CDOM algorithms, but infre-
quently in empirical CHL algorithms. However, absorption by CHL at
412 nm is 71.3% of the peak absorption at 443 nm (Fig. 10), and nearly
one third (31.3%) of the total CHL-specific absorption between 400 and
700 nm occurs below 443 nm in the blue-violet region, both of which
suggest that bands below 443 nm (e.g., the 412 nm present on most
heritage instruments) can be useful in detecting chlorophyll in regions
where the assumption of CHL and CDOM covariation remains valid.

We offer the following for future consideration regarding the use of
Rrs412 in an MBR algorithm. First, Table 3 empirically demonstrates
that Rrs412:Rrs555 and Rrs443:Rrs555 versus in situ CHL have comparable
R2 for the clearest waters in the Valente dataset. This indicates re-
sponsiveness of Rrs412 to changes in chlorophyll concentration, despite
the overlapping CDOM absorption spectra. Second, the empirical OC
algorithms that include Rrs412, such as OC5_SEAWIFS and OC6_SEA-
WIFS, have comparable R2 for MBR versus in situ CHL (0.836 and 0.851,
respectively) with those not using Rrs412, such as OC4_SEAWIFS
(0.851). Note, the global distribution of CHL from the OC6_SEAWIFS
algorithm, based on the entire SeaWiFS mission dataset, is generally
similar to the distribution from OC4_SEAWIFS (Fig. 8). Third, SeaWiFS
and MODIS-Aqua satellite-to-in situ match-ups show comparable results
in waters with CHL < 0.2 mg m−3 when including and not including
Rrs412. Biases and MAEs for OC4_, OC5_, and OC6_SEAWIFS are 31, 28,
and 38% and 60, 64, and 67%, respectively. Biases and MAEs for OC3_,
OC4_, and OC6_MODIS are 43, 36, and 40% and 56, 54, and 57%, re-
spectively (noting that OC4_MODIS includes Rrs412 in its numerator).
Finally, the inclusion of Rrs412 in the MBR numerator extends its dy-
namic range such that retrieved CHL are less sensitive to uncertainties
in MBR. As a demonstration of this, consider that corresponding MBRs
for OC4_, OC5_, and OC6_SEAWIFS for CHL = 0.1 mg m−3 are ap-
proximately 5.0, 5.9, and 10.6, respectively. Changing the MBRs by
−10, −5, −2, 2, 5, and 10% corresponds to changes in retrieved CHL
from OC4_SEAWIFS by 20, 9.5, 3.7, −3.6, −8.7, and −16.7%, re-
spectively. These changes in CHL fall to 17.6, 8.4, 3.3, −3.1, −7.6,
−14.6%, respectively, for OC5_SEAWIFS and to 17.0, 8.0, 3.1, −2.9,
−7.1, and − 13.5%, respectively, for OC6_SEAWIFS.

4.2. Frequency distribution of the maximum band (MaxB) and trophic
status

Finally, the concept of MBR itself offers what we believe to be a

reliable proxy indicator for the trophic status of a body of water. The
terms ‘oligotrophic,’ ‘mesotrophic’ and ‘eutrophic’ (meaning well-
nourished) get frequent use in the scientific literature to designate
trophic status, however, quantitative definitions in terms of CHL levels
are arbitrarily defined. The OBPG, for example, builds on the CZCS
analyses of Antoine et al. (1996) by defining oligo-, meso-, and eu-
trophic as CHL ≤ 0.1 mg m−3, 0.1 < CHL < 1.0 mg m−3, and
CHL ≥ 1 mg m−3 respectively in their reporting. We contend that the
frequency of the brightest, maximum band (MaxB) in the MBR of the
OC6_SEAWIFS algorithm, may serve as a useful, reproducible, bio-op-
tically-based index of trophic status. To that end, we pursued the fol-
lowing to assess the widely adopted boundaries of 0.1 and 1.0 mg m−3

and to explore a simple bio-optical resource for further evaluating re-
gional and global changes in aquatic biogeochemistry (e.g., changing
distributions of MaxB indicate changes in aquatic optical properties).

The frequency distribution of the maximum band based on all the
available daily SMI Rrs(λ) data from the SeaWiFS mission is illustrated
in Fig. 11. To generate this distribution, we identified the maximum
band (MaxB) of Rrs412, Rrs443, Rrs490 and Rrs510 for each pixel in each
SMI image encompassing the mission duration, 1997–2010. The
overlap among bands is similar to the overlap in the in situ data for
OC6_SEAWIFS (Fig. 7), but the frequency curves are much smoother
because the mission dataset (2,058,929,408) is so much larger than the
in situ dataset (2720). Rrs412 generally prevails over other bands from
the lowest CHL to ~0.5 mg m−3, after which Rrs490 begins its dom-
inance. The transition from dominance by Rrs490 to Rrs510 begins at a
CHL of ~1.67 mg m−3, above which Rrs510 generally dominates. When
we examined the long-term-mission means for SeaWiFS Rrs data, we
found that the median CHL values for the regions where the means for
Rrs412, Rrs443, Rrs490, and Rrs510 dominate are ~0.10, 0.34, 0.70, and
3.1 mg m−3, respectively. The long-term mean for Rrs412 dominates
other bands for much of the world ocean, with the Rrs412:Rrs443 ratio
exceeding unity for > 80% of valid pixel retrievals. But, Rrs412 and
Rrs443 are not always strongly dissimilar. In those regions where the
mean Rrs412 dominates, the 25th, 50th (median) and 75th percentiles of
the Rrs412:Rrs443 ratio are 1.14, 1.20, and 1.27, respectively. In those
regions where the long-term mean Rrs443 dominates, the ratios at these
percentiles are 0.93, 0.97, and 0.98, respectively.

We propose that the use of reproducible radiometry to define CHL
thresholds provides a modern tool to define these definitions of trophic

Fig. 10. Example absorption spectrum for phytoplankton chlorophyll a. The
modeled phytoplankton absorption spectrum is based on equations from
Bricaud et al. (1998) and the mean global CHL of 0.18 mg m−3. The percent of
the total cumulative absorption from 400 to 700 nm is also shown above the
absorption spectrum, and the vertical lines below the curve intersect the x axis
at the six wavelengths on the SeaWiFS sensor.
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status, particularly to assess changes over time. At CHL less than
~0.1 mg m−3, Rrs412 dominates nearly 100% of the time while at CHL
above 1.67 mg m−3, Rrs510 begins to dominate Rrs490 and all other
bands. Between 0.1 and 1.67 mg m−3, Rrs443, Rrs490, and Rrs510 share
dominance with Rrs412 (Fig. 11). To tie a definition of trophic status to a
modern satellite dataset and stimulate community discussion, we
therefore propose that the solid vertical black line at 0.1 mg m−3 in
Fig. 11 operationally defines the upper concentration of CHL in oligo-
trophic water while the dashed vertical black line at 1.67 mg m−3 op-
erationally delineates the lowest CHL for eutrophic water. The region
with CHL above 0.1 mg m−3 and below 1.67 mg m−3 is, therefore,
considered as mesotrophic water. Application of these criteria to the 40-
year SMI mean CHL for the global ocean (see Fig. 1), yields the percent
of ocean area indexed as oligotrophic, mesotrophic and eutrophic as
24.25, 67.04, and 8.71%, respectively (Fig. 12). For comparison,
Antoine et al. (1996) reported percent of ocean area indexed as olig-,
meso- and eutrophic for the latitudinal band spanning 50oS to 50oN as
55.8%, 41.8%, and 2.4%, with the boundary between meso- and eu-
trophic defined at 1.0 mg m−3. Fig. 12 clearly indicates that our me-
sotrophic and eutrophic regions expand into higher latitudes. Broadly
speaking and not surprisingly, the oligotrophic regions shown in Fig. 12
follow the spatial patterns of open ocean gyres while the eutrophic
areas remain mostly restricted to highly productive near-shore regions
of continental shelves.

5. Concluding remarks

Community interest undeniably extends well beyond CHL to other
geophysical measurements and, as previously stated, we anticipate the
development of improved methods for retrieving CHL with the forth-
coming increased spectral resolution of future satellite instruments.
Nonetheless, maintenance of a suite of simple, sensor-to-sensor con-
sistent, empirical OC algorithms remains worthwhile. We repeatedly
highlighted their value in mission-merging activities and climate data
record development. In addition, OC algorithms have routinely proven
themselves useful for comparing and verifying the radiometric perfor-
mances of overlapping ocean color missions (Franz et al., 2005; Franz
et al., 2018). These global empirical algorithms have also served as
performance references when developing and evaluating in situ data
sets (Werdell and Bailey, 2005), regional algorithms (e.g., Kahru and
Mitchell, 2001; Carder et al., 2004; Werdell et al., 2009), and more
complex SAA approaches (IOCCG, 2006; Werdell et al., 2018).

Through this work, we generated the most up-to-date suite of OC
algorithms using the most spatially and temporally diverse in situ da-
taset available for the largest number of satellite instruments ever
considered, with the long-term purpose of facilitating CHL climate data
record development spanning four-plus decades. We also presented
expanded versions of the OC algorithms that make use of additional
spectral information when available (wavelengths on or near 412 and
670 nm). Our goals were to provide modern versions of this core al-
gorithm that better represent spatial and temporal bio-optical diversity
than their predecessors and to explore increasing information content
through the inclusion of additional wavelengths. We further proposed
to expand their utility to the definition of trophic status, which broadly
reinforces previously suggested thresholds, but offers a more direct tie
to aquatic biochemistry anchored to remote-sensing reflectances. We
expect the continued use of the OC approach well into the future and, as
such, offer the Version -7 algorithms as the next generation for use in
CHL climate record development.
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